疫苗的mRNA遞送系統(tǒng)性能的決定性因素
mRNA遞送系統(tǒng)的性能決定因素是多因素且相互作用的,包括:(1)它們向靶細胞遞送的能力,并將mRNA有效地釋放至細胞質(zhì)并進行翻譯的效率;(2)佐劑,可以增強免疫反應;(3)將注射部位或全身分布的過度炎癥和脫靶表達可能引起的不良反應或毒性降至低。
劑量
目前在SARS-CoV-2臨床試驗中追求的大劑量范圍給藥(從1 µg到100 µg),能夠評價mRNA遞送系統(tǒng)的效率(表1)。臨床試驗中的劑量主要分為較高劑量(30-100 µg)的核苷修飾RNA(Moderna,BioNTech),較低劑量(7.5-20 µg)的未修飾的RNA(CureVac,Translate Bio),甚至更低劑量(1-10 µg)的自擴增RNA(Arcturus,倫敦帝國理工學院)。
決定這些劑量的因素有兩個:與恢復期血漿相比,中和抗體效價和T細胞反應水平,以及在每個劑量下發(fā)生不良反應的頻率和嚴重程度。第一階段臨床試驗中所有高劑量實驗的中止就證明了SARS-CoV-2疫苗有一個相當狹窄的接受窗口,達到保護所需的劑量產(chǎn)生了難以接受的不良反應的頻率和嚴重程度。在BioNTech第一階段臨床試驗中測試的兩種核苷修飾的RNA與恢復期血漿相比,具有較高的中和效價,而由于編碼膜結(jié)合的全長刺突蛋白的較大結(jié)構(gòu)RNA發(fā)生不良反應的頻率和嚴重程度較低,因此進行了第三階段臨床研究。值得注意的是,劑量以質(zhì)量表示,而摩爾劑量取決于結(jié)構(gòu)的長度,而且,根據(jù)遞送系統(tǒng)的效率和靶向特性,實際翻譯的mRNA量只是兩者中的一小部分。
在預防傳染病的mRNA疫苗的動物研究中,當使用魚精蛋白、樹枝狀大分子和早期陽離子脂質(zhì)系統(tǒng)時,在小鼠中能夠產(chǎn)生中和抗體或抵御病毒的初始劑量高達10-80 µg(表3)。當之后使用*近的LNPs遞送的mRNA疫苗時,小鼠中和所需的劑量在給藥兩次時降低到接近1 µg,而對于未修飾的mRNA,所需劑量更低,接近0.25 µg。對于自我擴增的mRNA,劑量可以更低,只需要兩次給藥0.1 µg或一次給藥2 µg。在較大的動物模型(倉鼠、雪貂和非人的靈長類動物)中,可用的研究較少,劑量范圍很廣,從5 µg到200 µg,沒有明顯的模式。
有趣的是,當使用體表面積將人的劑量轉(zhuǎn)換為動物的劑量時,60 kg人的100 µg劑量相當于3 kg獼猴的15 µg劑量和20 g小鼠的0.4 µg劑量,這兩個數(shù)據(jù)與表1和表3中的LNPs大致相同。顯然,給藥系統(tǒng)在確定有效劑量方面起著重要作用。人們強烈希望提高給藥效率,以減少劑量和維持效價,因為這有望通過減少mRNA和給藥載體的局部反應和脫靶效應來降低不良反應的頻率和嚴重程度。減少劑量還將降低每個人接種疫苗所需的原材料數(shù)量和相關(guān)成本。特別是當前的大流行使人們關(guān)注到mRNA LNP疫苗的一些重大供應鏈和生產(chǎn)能力的限制,這一狀況可以通過更有效的遞送系統(tǒng)加以改善。
表3:體內(nèi)預防性接種的mRNA劑量。不同的mRNA傳遞系統(tǒng)和不同的物種顯示了誘導中和抗體效價或抵御病毒攻擊所需的mRNA的劑量。與早期的遞送系統(tǒng)相比,脂質(zhì)納米顆粒(LNPs)遞送的mRNA的所需劑量減少了10倍。
效價和遞送效率
已經(jīng)有許多研究試圖確定LNP和其他核酸遞送系統(tǒng)的結(jié)構(gòu)-功能的關(guān)系。決定其效價或傳遞效率的LNP*常用的參數(shù)是pKa。pKa是使LNP中50%的可電離脂質(zhì)質(zhì)子化時的pH。到目前為止,LNP的pKa通過一種叫TNS的染料來測定,TNS是帶負電荷的,當與帶正電荷的LNP結(jié)合時,產(chǎn)生熒光增效果好果。
用TNS培養(yǎng)的LNPs在pH范圍較大的緩沖液內(nèi)進行熒光測量,以推斷染料與表面電荷的結(jié)合,估算pKa,發(fā)現(xiàn)達到了大熒光的一半?;贛C3的Onpattro LNP在靜脈注射后使肝細胞沉默的佳pKa為6.4。TNS的pKa在6.2-6.8范圍內(nèi)對任何一種LNP都有一個肝細胞沉默的佳值。解釋這種依賴于pKa的原理是基于LNP的可電離脂質(zhì)在pH為7.4時接近中性,而在它進入細胞后,內(nèi)涵體的pH值隨著內(nèi)涵體途徑的演變而開始下降,使可電離脂質(zhì)質(zhì)子化,而可電離脂質(zhì)又將結(jié)合到內(nèi)涵體的一個陰離子內(nèi)源性磷脂上并且破壞其雙層結(jié)構(gòu),從而將mRNA釋放到細胞質(zhì)中用于核糖體翻譯表達蛋白。
內(nèi)涵體逃逸需要可電離脂質(zhì)的另一個特征,即錐形的形態(tài),其中脂質(zhì)尾部的橫截面大于其頭部。這使得可電離的脂質(zhì)/內(nèi)涵體磷脂離子對和雙層結(jié)構(gòu)不相容,并且更有可能形成倒六邊形的結(jié)構(gòu),從而破壞內(nèi)涵體的膜結(jié)構(gòu)。這也被稱為分子形狀假說,它解釋了為什么在飽和的C18烷基鏈上引入一個或兩個雙鍵會產(chǎn)生更多的錐形和更少的圓柱形的形態(tài),即膜的破壞和內(nèi)涵體逃逸。
這兩個C18亞油酸的尾部,與二甲胺頭部的適當?shù)?、調(diào)節(jié)好的pKa結(jié)合,是MC3可電離脂質(zhì)所定義的特征。取代MC3用于mRNA傳遞的可電離脂質(zhì)保留了pKa的要求,但通過在烷基尾部引入更多的支鏈來追求更大的內(nèi)涵體裂解特性。例如,來自Moderna的脂質(zhì)H和脂質(zhì)5和Arcturus的脂質(zhì)2,2(8,8)4C CH3一樣,有三個烷基尾部,而Acuitas的ALC-0315有四個烷基尾部,A9有五個烷基尾部(表2)。這種增強的錐形形態(tài)解釋了含有這些可電離脂質(zhì)的LNPs是更有效的遞送載體,具有更強的內(nèi)涵體逃逸。
雖然LNP的pKa和分子形狀假說對LNP的遞送效率有很好的貢獻,但其他因素也很重要,如LNP表面PEG-脂質(zhì)的穩(wěn)定性,以及四種脂質(zhì)在乙醇溶液中的比例,這些因素*終決定了LNP的超微結(jié)構(gòu)。如上所述,PEG-脂質(zhì)通過提供親水性外殼來控制LNP的大小,該外殼在組裝過程中限制囊泡融合,從而使較高的PEG-脂質(zhì)濃度產(chǎn)生較小的LNP。
如一項研究表明,將PEG-脂質(zhì)的摩爾分數(shù)從0.25%改變到5%,可以將LNP的大小從117 nm減少到25 nm,而當使用摩爾分數(shù)為2.5%的PEG-脂質(zhì)時,肝細胞沉默的佳粒徑大小是78 nm。由于PEG-脂質(zhì)的烷基尾部有14個碳,它不能穩(wěn)定地固定在LNP表面,隨著可電離脂質(zhì)MC3和DSPC的脫落,它逐漸在循環(huán)中從LNP上脫落。這種PEG脫落被認為在一定程度上使LNP轉(zhuǎn)染有效,但如果脫落過強,會導致可電離脂質(zhì)和DSPC的迅速喪失,這將對內(nèi)涵體逃逸產(chǎn)生不利的影響。
例如,通過將烷基尾部延伸到18個碳,PEG-脂質(zhì)不會脫落,但在肝細胞中也沒有被沉默。另一方面,加入較高濃度的PEG使顆粒變得更小,會導致更快的脫落、可電離脂質(zhì)丟失、并且減少沉默基因效果。目前,人們對LNP的不穩(wěn)定和動態(tài)性質(zhì)不*了解。另一項研究(與上面提到的研究類似)還發(fā)現(xiàn),用1.5%的PEG-脂質(zhì)制備的中等直徑64 nm的LNP比更大直徑(100 nm)的LNP(0.5%PEG脂質(zhì))以及更小直徑(48 nm)LNP(3%PEG脂質(zhì))能更有效地遞送mRNA。
然而,通過改變四種脂質(zhì)的摩爾比,在1.5%PEG-脂質(zhì)、直徑64 nm的LNP中,以保持計算出的LNP PEG層下的DSPC密度為佳值,這樣能夠制備更大尺寸的的(100 nm)LNP,其mRNA表達與64 nm的LNP相比增加了兩倍。因此,除了LNP的pKa、可電離脂質(zhì)的分子形狀和PEG-脂質(zhì)的動力學之外,更詳細的LNP超微結(jié)構(gòu)特征和每個組分的狀態(tài)也決定了其效價。
內(nèi)涵體逃逸
對siRNA-LNPs的細胞攝取和內(nèi)涵體轉(zhuǎn)運進行了詳細的研究,并假設其與mRNA LNPs的細胞攝取和內(nèi)涵體轉(zhuǎn)運相似。一項使用電子顯微鏡中金溶膠粒子計數(shù)的定量研究表明,對于MC3 LNP,內(nèi)涵體中只有2%的siRNA從內(nèi)涵體逃逸到胞漿中,導致每個細胞中有幾千個siRNA分子可供沉默。
然而,這個數(shù)字與在**相關(guān)濃度下每個細胞RISC與有功能活性的siRNA的相互作用估計水平的范圍相同。因此,絕大多數(shù)siRNA注定要進行溶酶體降解或通過多囊體(晚期內(nèi)涵體)循環(huán)在體外進行釋放。增加LNPs的內(nèi)涵體逃逸是提高給藥效率的主要途徑,主要是通過調(diào)節(jié)LNP的pKa和增加可電離脂質(zhì)的錐形形態(tài)來實現(xiàn)的。
對于后者,脂質(zhì)H和脂質(zhì)5含有三個分支,而在MC3中只有兩個分支,但具有相似的PKA,與MC3相比,它們的內(nèi)涵體逃逸率變?yōu)樵瓉淼乃谋?。目前還沒有報道Acuitas ALC-0315的內(nèi)涵體逃逸情況,但Acuitas ALC-0315的肝細胞沉默效率是MC3的10倍,這表明其更具有錐形的四分支結(jié)構(gòu)也有更強的內(nèi)涵體逃逸。
因此,這些新一代的可電離脂質(zhì)似乎實現(xiàn)了內(nèi)涵體逃逸率,與MC3 siRNA-LNPs的2-5%相比,接近15%或更高。這一領域的挑戰(zhàn)之一是缺乏可廣實施的可靠、標準化的內(nèi)涵體逃逸方法。目前已經(jīng)開發(fā)了許多方法,但通常只針對一個實驗室組。*近還發(fā)現(xiàn),mRNA發(fā)生胞吐的量與釋放到胞漿中的量相似。MC3 LNPs在MC3的晚期內(nèi)涵體和NP1復合體中被解離,MC3LNPs和mRNA被重新包裹成外泌體,并從細胞中輸出。這些內(nèi)-外泌體與*初的MC3 LNPs具有相似的mRNA遞送能力,但內(nèi)-外泌體可以運輸?shù)讲煌慕M織,且似乎免疫**能力較低。LNPs攜帶的mRNA的外泌體重新分布的潛在意義仍有待探索。
電荷和配體介導的靶向
使用**帶電的陽離子脂質(zhì)的早期脂質(zhì)納米顆粒很大,由于它們的**帶正電荷,很快就被**,并且他們通常是以肺部為靶點。BioNTech的研究小組減少了DOTMA/Dope mRNA LNPs中陽離子DOTMA的數(shù)量,直到由于NP比小于1的陰離子mRNA過量而導致凈電荷帶負電。
靜脈注射這些帶負電荷的且長度為300 nm的mRNA LNPs可以導致脾臟靶向和樹突狀細胞的mRNA表達,它們能夠介導適應性和I型干擾素介導的先天免疫機制用于**免疫**。同樣,用C12-200原型LNP生產(chǎn)脾靶向的mRNA LNP,但用小的、樹枝狀的可電離脂質(zhì)Cf-Deg-Lin代替C12-200,Cf-Deg-Lin具有四個亞油酸烷基鏈和四個氮原子,TNS pKa為5.7。LNP的這種極低的pKa將確??呻婋x脂質(zhì)在pH低于7之前不被質(zhì)子化,從而制備出一種包載帶負電荷的mRNA的LNP,直到內(nèi)涵體途徑晚期,并輸送到脾臟。
他們發(fā)現(xiàn)脾臟中表達mRNA的主要細胞群是B淋巴細胞,根據(jù)流式細胞術(shù)分析,其中7%的B淋巴細胞表達mRNA。*近,利用三種不同的堿性(MC3、C12-200或5A2-SC8)作為可電離脂質(zhì),混合在一定摩爾分數(shù)的**性陽離子脂質(zhì)(DOTAP)或**性陰離子脂質(zhì)(18PA)中,使LNPs具有凈正電荷、凈負電荷或凈中性電荷,從而實現(xiàn)了荷電靶向。與上述發(fā)現(xiàn)一致的是,高度正電的LNPs靶向肺部,高度負電的LNPs靶向脾臟,而中等電荷的LNPs主要靶向肝臟。肝靶向已被證明取決于Apo-E與近中性脂質(zhì)體或LNPs結(jié)合,負電荷的脂質(zhì)體這樣不會產(chǎn)**生這種情況。
脂質(zhì)納米顆粒的佐劑性
已知脂質(zhì)納米顆粒具有其自身的佐劑活性。一項研究顯示,與滅活病毒相比,對小鼠給藥10 µg和對非人的類靈長類動物給藥的100 µg的核苷修飾的編碼各種免疫原的mRNA LNPs(來自Acuitas)后,濾泡輔助T細胞(Tfh)和**中心B(GC B)細胞數(shù)量增加。Tfh細胞導致免疫球蛋白類別的轉(zhuǎn)換、親和力成熟、以及分化生成長期的記憶B細胞和漿細胞。當Fluc mRNA LNP與蛋白質(zhì)亞單位HA免疫原聯(lián)合使用時,發(fā)現(xiàn)LNP本身具有佐劑特性,**中心B細胞數(shù)量增加了4倍,盡管Tfh細胞數(shù)量與單獨使用蛋白質(zhì)相比并沒有增加。
因此LNP,特別是對核苷修飾的mRNA LNP似乎增強了GC B細胞的反應。另一項研究使用默克公司的不對稱可電離脂質(zhì),研究了LNP作為乙肝蛋白亞單位疫苗佐劑的使用。LNPs與蛋白質(zhì)亞單位疫苗聯(lián)合注射可將B細胞反應提高到與已知疫苗佐劑類似的水平,包括鋁基佐劑、寡核苷酸和TLR4激動劑3-O-脫脂單磷酰脂A(MPL)。LNP引起了強有效的的抗原特異性CD4+和CD8+T細胞反應,而在LNP中加入額外佐劑可能會進一步影響Th1與Th2的偏向。該小組使用登革病毒免疫原進行后續(xù)的研究發(fā)現(xiàn),在LNP中也有類似的強佐劑活性,而且這種活性依賴于可電離脂質(zhì)的存在。脂質(zhì)體中的脂質(zhì)成分以前也被認為在粘膜疫苗中具有佐劑活性。
結(jié)論
在過去的二十年里,mRNA**方法取得了非同尋常的進展,首先是確定了利用修飾的核苷和序列工程控制mRNA先天免疫原性的方法,以及mRNA在疫苗和其他**適應癥中的應用。與以前的遞送系統(tǒng)相比,使用siRNA遞送的脂質(zhì)納米顆粒原型使遞送效率提高了一個數(shù)量級,并且仍在不斷提高,這主要是歸功于新型可電離脂質(zhì)的設計。mRNA LNP的結(jié)構(gòu)、功能、效價、靶向性和生物學特性(如佐劑性)的許多方面仍有待探索,以便充分發(fā)揮這種強大的、具有變革意義的**方式的潛力。